Matsumura : Commutative Algebra Part 2 Daniel

نویسنده

  • Daniel Murfet
چکیده

1 Extension of a Ring by a Module Let C be a ring and N an ideal of C with N = 0. If C ′ = C/N then the C-module N has a canonical C ′-module structure. In a sense analogous with the notion of extension for modules, the data C,N is an “extension” of the ring C ′. Definition 1. Let C ′ be a ring and N a C ′-module. An extension of C ′ by N is a triple (C, ε, i) consisting of a ring C, a surjective ring morphism ε : C −→ C ′ and a morphism of C-modules i : N −→ C such that Ker(ε) is an ideal whose square is zero and the following sequence of C-modules is exact 0 // N i // C ε // C ′ // 0 Note that Ker(ε) has a canonical C ′-module structure, and i gives an isomorphism of C ′-modules N ∼= Ker(ε). Two extensions (C, ε, i), (C1, ε1, i1) are said to be isomorphic if there exists a ring morphism f : C −→ C1 such that ε1f = ε and fi = i1. That is, the following diagram of abelian groups commutes 0 // N i // C

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matsumura: Commutative Algebra

These notes closely follow Matsumura’s book [Mat80] on commutative algebra. Proofs are the ones given there, sometimes with slightly more detail. Our focus is on the results needed in algebraic geometry, so some topics in the book do not occur here or are not treated in their full depth. In particular material the reader can find in the more elementary [AM69] is often omitted. References on dim...

متن کامل

Commutative pseudo BE-algebras

The aim of this paper is to introduce the notion of commutative pseudo BE-algebras and investigate their properties.We generalize some results proved by A. Walendziak for the case of commutative BE-algebras.We prove that the class of commutative pseudo BE-algebras is equivalent to the class of commutative pseudo BCK-algebras. Based on this result, all results holding for commutative pseudo BCK-...

متن کامل

On the algebra of quasi-shuffles

For any commutative algebra R the shuffle product on the tensor module T (R) can be deformed to a new product. It is called the quasi-shuffle algebra, or stuffle algebra, and denoted T q (R). We show that if R is the polynomial algebra, then T q (R) is free for some algebraic structure called Commutative TriDendriform (CTD-algebras). This result is part of a structure theorem for CTD-bialgebras...

متن کامل

Part Iv.1. Lie Algebras and Co-commutative Co-algebras

Introduction 2 1. Lie algebras: recollections 3 1.1. The basics 3 1.2. Scaling the structure 3 1.3. Filtrations 4 1.4. The Chevalley complex 4 1.5. The functor of primitives 6 1.6. The enhanced adjunction 6 1.7. The symmetric Hopf algebra 8 2. Looping Lie algebras 9 2.1. Group-Lie algebras 10 2.2. Forgetting to group structure 10 2.3. Chevalley complex of group-Lie algebras 11 2.4. Chevalley co...

متن کامل

The Localization of Commutative (unbounded) Hilbert Algebras

Hilbert algebras are important tools for certain investigations in algebraic logic since they can be considered as fragments of any propositional logic containing a logical connective implication and the constant 1 which is considered as the logical value “true”. The concept of Hilbert algebras was introduced in the 50-ties by L. Henkin and T. Skolem (under the name implicative models) for inve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006